#!/bin/bash
git clone https://github.com/erdiphd/HER_force.git
cd HER_force/docker
#train our methods
docker-compose run --rm -e mujoco_env=FetchPickAndPlace-v1 -e log_tag=log/t1_contact_energy_pick -e n_epochs=50 -e num_cpu=20 -e prioritization=contact_energy -e reward_type=sparse her_tactile
docker-compose run --rm -e mujoco_env=FetchPush-v1 -e log_tag=log/t1_contact_energy_push -e n_epochs=50 -e num_cpu=20 -e prioritization=contact_energy -e reward_type=sparse her_tactile
docker-compose run --rm -e mujoco_env=FetchSlide-v1 -e log_tag=log/t1_contact_energy_slide -e n_epochs=50 -e num_cpu=20 -e prioritization=contact_energy -e reward_type=sparse her_tactile
#train cper methods
docker-compose run --rm -e mujoco_env=FetchPickAndPlace-v1 -e log_tag=log/t1_cper_pick -e n_epochs=50 -e num_cpu=20 -e prioritization=cper -e reward_type=intrinsic her_tactile
docker-compose run --rm -e mujoco_env=FetchPush-v1 -e log_tag=log/t1_cper_push -e n_epochs=50 -e num_cpu=20 -e prioritization=cper -e reward_type=intrinsic her_tactile
docker-compose run --rm -e mujoco_env=FetchSlide-v1 -e log_tag=log/t1_cper_slide -e n_epochs=50 -e num_cpu=20 -e prioritization=cper -e reward_type=intrinsic her_tactile
#train MEP methods
docker-compose run --rm -e mujoco_env=FetchPickAndPlace-v1 -e log_tag=log/t1_mep_pick -e n_epochs=50 -e num_cpu=20 -e prioritization=entropy -e reward_type=sparse her_tactile
docker-compose run --rm -e mujoco_env=FetchPush-v1 -e log_tag=log/t1_mep_push -e n_epochs=50 -e num_cpu=20 -e prioritization=entropy -e reward_type=sparse her_tactile
docker-compose run --rm -e mujoco_env=FetchSlide-v1 -e log_tag=log/t1_mep_slide -e n_epochs=50 -e num_cpu=20 -e prioritization=entropy -e reward_type=sparse her_tactile
#train PER methods
docker-compose run --rm -e mujoco_env=FetchPickAndPlace-v1 -e log_tag=log/t1_per_pick -e n_epochs=50 -e num_cpu=20 -e prioritization=tderror -e reward_type=sparse her_tactile
docker-compose run --rm -e mujoco_env=FetchPush-v1 -e log_tag=log/t1_per_push -e n_epochs=50 -e num_cpu=20 -e prioritization=tderror -e reward_type=sparse her_tactile
docker-compose run --rm -e mujoco_env=FetchSlide-v1 -e log_tag=log/t1_per_slide -e n_epochs=50 -e num_cpu=20 -e prioritization=tderror -e reward_type=sparse her_tactile
#train her methods
docker-compose run --rm -e mujoco_env=FetchPickAndPlace-v1 -e log_tag=log/t1_her_pick -e n_epochs=50 -e num_cpu=20 -e prioritization=none -e reward_type=sparse her_tactile
docker-compose run --rm -e mujoco_env=FetchPush-v1 -e log_tag=log/t1_her_push -e n_epochs=50 -e num_cpu=20 -e prioritization=none -e reward_type=sparse her_tactile
docker-compose run --rm -e mujoco_env=FetchSlide-v1 -e log_tag=log/t1_her_slide -e n_epochs=50 -e num_cpu=20 -e prioritization=none -e reward_type=sparse her_tactile
#train EBP methods
git clone https://github.com/ruizhaogit/EnergyBasedPrioritization
#Please use our Gym environment with the EBP
Creating virtual anaconda python environment
#!/bin/bash
source /home/user/conda/bin/activate
conda create --name her python=3.7 -y
conda activate her
pip install numpy && pip install cffi lockfile imageio glfw tensorflow==1.14 cython && pip install mujoco_py && pip install beautifultable==0.7.0
pip install numpy-quaternion gym==0.15.4 click joblib mpi4py scipy protobuf==3.19 scikit-learn pyyaml pyquaternion
#Clone the repository
git clone https://github.com/erdiphd/HER_force.git
#train the robot
cd HER_force/code/Algorithm
conda activate her
python baselines/her/experiment/train.py --env_name FetchPickAndPlace-v1 --logdir=log/t1_contact_energy --n_epochs=50 --num_cpu=20 --prioritization=contact_energy --reward_type sparse
Source Code and Environment